9,937 research outputs found

    Entanglement perturbation theory for the quantum ground states in two dimensions

    Full text link
    A simple, general and practically exact method, Entanglement Perturbation Theory (EPT), is formulated to calculate the ground states of 2D macroscopic quantum systems with translational symmetry. An emphasis will be placed on the applicability of EPT to fermions. We will discuss some preliminary evidences which indicate a potential of EPT

    Nonpolynomial Normal Modes of the Renormalization Group in the Presence of a Constant Vector Potential Background

    Full text link
    We examine the renormalization group flow in the vicinity of the free-field fixed point for effective field theories in the presence of a constant, nondynamical vector potential background. The interaction with this vector potential represents the simplest possible form of Lorentz violation. We search for any normal modes of the flow involving nonpolynomial interactions. For scalar fields, the inclusion of the vector potential modifies the known modes only through a change in the field strength renormalization. For fermionic theories, where an infinite number of particle species are required in order for nonpolynomial interactions to be possible, we find no evidence for any analogous relevant modes. These results are consistent with the idea that the vector potential interaction, which may be eliminated from the action by a gauge transformation, should have no physical effects.Comment: 12 page

    Novel results in STM, ARPES, HREELS, Nernst, neutron, Raman, and isotope substitution experiments and their relation to bosonic modes and charge inhomogeneity, from perspective of negative-Ueff boson-fermion modelling of HTSC

    Full text link
    This paper seeks to synthesize much recent work on the HTSC materials around the latest STM results from Davis and coworkers. The conductance diffuse scattering results in particular are used as point of entry to discuss bosonic modes, both of condensed and uncondensed form. The bosonic mode picture is essential to understanding an ever growing range of observations within the HTSC field. The work is expounded within the context of the negative-U, boson-fermion modelling long advocated by the author. This general approach is presently seeing much theoretical development, into which I have looked to couple many of the experimental advances. While the formal theory is not yet sufficiently detailed to cover adequately all the experimental complexities presented by the real cuprate systems, it is clear that it affords very appreciable support to the line taken. An attempt is made throughout to say why and how it is that these events are tied so very closely to this particular set of materials.Comment: 36 pages pdf with 3 figures and 1 table included, Submitted to J. Phys. Cond. Mat

    Time-to-reperfusion in patients with acute myocardial infarction and mortality in prehospital emergency care : meta-analysis

    Get PDF
    Acknowledgements We would like to thank Mr. Robert Polson, University of Highlands and Islands for his assistance in literature search strategy.Peer reviewedPublisher PD

    Recursive time-varying filter banks for subband image coding

    Get PDF
    Filter banks and wavelet decompositions that employ recursive filters have been considered previously and are recognized for their efficiency in partitioning the frequency spectrum. This paper presents an analysis of a new infinite impulse response (IIR) filter bank in which these computationally efficient filters may be changed adaptively in response to the input. The filter bank is presented and discussed in the context of finite-support signals with the intended application in subband image coding. In the absence of quantization errors, exact reconstruction can be achieved and by the proper choice of an adaptation scheme, it is shown that IIR time-varying filter banks can yield improvement over conventional ones

    Baryonic contributions to the dilepton spectrum of nucleon-nucleon collisions

    Full text link
    We study the production of dileptons in relativistic nucleon-nucleon collisions. Additionally to the traditional dilepton production channels (vector meson decays, meson and Delta(1232) Dalitz decays) we included in our model as new dilepton sources the Dalitz decay of higher unflavored baryon resonances with spin<=5/2 and mass<=2.25 GeV/c^2. The contributions of these new channels are estimated using experimental information about the Ngamma decays of the resonances and have large uncertainties. The obtained dilepton spectra are compared to the experimental data by the DLS collaboration. Predictions for the HADES detector (SIS, GSI) are also discussed. In spite of the large uncertainties of the higher resonance Dalitz decay contributions we are able to draw the conclusion that these contributions are negligible compared to the other dilepton sources and do not influence the detectability of the phi and omega vector meson peaks.Comment: 9 pages, 4 figures, version accepted for publication in Phys. Rev.

    Ontogenesis of Gonadotropin-Releasing Hormone Neurons: A Model for Hypothalamic Neuroendocrine Cell Development

    Get PDF
    The vertebrate hypothalamo–pituitary–gonadal axis is the anatomical framework responsible for reproductive competence and species propagation. Essential to the coordinated actions of this three-tiered biological system is the fact that the regulatory inputs ultimately converge on the gonadotropin-releasing hormone (GnRH) neuronal system, which in rodents primarily resides in the preoptic/hypothalamic region. In this short review we will focus on: (1) the general embryonic temporal and spatial development of the rodent GnRH neuronal system, (2) the origin(s) of GnRH neurons, and (3) which transcription – and growth factors have been found to be critical for GnRH neuronal ontogenesis and cellular fate-specification. Moreover, we ask the question whether the molecular and cellular mechanisms involved in GnRH neuronal development may also play a role in the development of other hypophyseal secreting neuroendocrine cells in the hypothalamus

    A Subband Coding Method for HDTV

    Get PDF
    This paper introduces a new HDTV coder based on motion compensation, subband coding, and high order conditional entropy coding. The proposed coder exploits the temporal and spatial statistical dependencies inherent in the HDTV signal by using intra- and inter-subband conditioning for coding both the motion coordinates and the residual signal. The new framework provides an easy way to control the system complexity and performance, and inherently supports multiresolution transmission. Experimental results show that the coder outperforms MPEG-2, while still maintaining relatively low complexity

    Some families of density matrices for which separability is easily tested

    Full text link
    We reconsider density matrices of graphs as defined in [quant-ph/0406165]. The density matrix of a graph is the combinatorial laplacian of the graph normalized to have unit trace. We describe a simple combinatorial condition (the "degree condition") to test separability of density matrices of graphs. The condition is directly related to the PPT-criterion. We prove that the degree condition is necessary for separability and we conjecture that it is also sufficient. We prove special cases of the conjecture involving nearest point graphs and perfect matchings. We observe that the degree condition appears to have value beyond density matrices of graphs. In fact, we point out that circulant density matrices and other matrices constructed from groups always satisfy the condition and indeed are separable with respect to any split. The paper isolates a number of problems and delineates further generalizations.Comment: 14 pages, 4 figure

    Conditional Entropy-Constrained Residual VQ with Application to Image Coding

    Get PDF
    This paper introduces an extension of entropy-constrained residual vector quantization (VQ) where intervector dependencies are exploited. The method, which we call conditional entropy-constrained residual VQ, employs a high-order entropy conditioning strategy that captures local information in the neighboring vectors. When applied to coding images, the proposed method is shown to achieve better rate-distortion performance than that of entropy-constrained residual vector quantization with less computational complexity and lower memory requirements. Moreover, it can be designed to support progressive transmission in a natural way. It is also shown to outperform some of the best predictive and finite-state VQ techniques reported in the literature. This is due partly to the joint optimization between the residual vector quantizer and a high-order conditional entropy coder as well as the efficiency of the multistage residual VQ structure and the dynamic nature of the prediction
    corecore